Analysis of Variance 1. Randomized Block Design 2. Factorial Design

Analysis of Variance Randomized Block Design

Randomized Block Design

 Experimental Units (Subjects) Are Assigned Randomly within Blocks

 Blocks are Assumed Homogeneous

 One Factor or Independent Variable of Interest

 2 or More Treatment Levels or Classifications

3. One Blocking Factor

Randomized Block Design

Factor Levels: (Treatments)	A, B, C), D		
Experimental Units	Treatments are randomly assigned within blocks			
Block 1	А	С	D	В
Block 2	С	D	В	А
Block 3	В	А	D	С
	:	:	:	:
Block b	D	С	А	В

Randomized Block F-Test

1.Tests the Equality of 2 or More (*p*) Population Means

2.Variables

- One Nominal Independent Variable
- One Nominal Blocking Variable
- One Continuous Dependent Variable

Randomized Block F-Test Assumptions

1.Normality

 Probability Distribution of each Block-Treatment combination is Normal

 2.Homogeneity of Variance
 Probability Distributions of all Block-Treatment combinations have Equal Variances

Randomized Block F-Test Hypotheses

> $H_0: \mu_1 = \mu_2 = \mu_3 = ... = \mu_p$

- All Population Means are Equal
- No Treatment Effect

> H_a: Not All μ_j Are Equal

- At Least 1 Pop. Mean is Different
- Treatment Effect
- $\mu_1 \neq \mu_2 \neq ... \neq \mu_p$ is wrong

Randomized Block F-Test Hypotheses

H₀: μ₁ = μ₂ = ... = μ_p
All Population Means are Equal
No Treatment Effect
H_a: Not All μ_j Are Equal

- At Least 1 Pop. Mean is Different
- Treatment Effect
- $\mu_1 \neq \mu_2 \neq ... \neq \mu_p$ is wrong Prepa

The F Ratio for Randomized Block Designs

> SS=SSE+SSB+SST

$$F = \frac{\text{MST}}{\text{MSE}} = \frac{SST / (p-1)}{SSE / (n-1-p+1-b+1)}$$
$$= \frac{SST / (p-1)}{SSE / (n-p-b+1)}$$

Randomized Block F-Test Test Statistic

- 1. Test Statistic
 F = MST / MSE
 MST Is Mean Square for Treatment
 MSE Is Mean Square for Error
- > 2. Degrees of Freedom
 - $v_1 = p 1$
 - $v_2 = n b p + 1$
 - *p* = # Treatments, *b* = # Blocks, *n* = Total Sample
 Size

Randomized Block F-Test Critical Value

If means are equal, $F = MST / MSE \approx 1$. Only reject large F!

Randomized Block F-Test Example

You wish to determine which of four brands of tires has the longest tread life. You randomly assign one of each brand (A, B, C, and D) to a tire location on each of 5 cars. At the .05 level, is there a difference in mean tread life?

	Tire Location					
Block	Left Front	Right Front	Left Rear	Right Rear		
Car 1	A: 42,000	C: 58,000	B: 38,000	D: 44,000		
Car 2	B: 40,000	D: 48,000	A: 39,000	C: 50,000		
Car 3	C: 48,000	D: 39,000	B: 36,000	A: 39,000		
Car 4	A: 41,000	B: 38,000	D: 42,000	C: 43,000		
Car 5	D: 51,000	A: 44,000	C: 52,000	B: 35,000		

Randomized Block F-Test Solution

- > Ho: $\mu_1 = \mu_2 = \mu_3 = \mu_4$
- Ha: Not All Equal
- > α = .05
- $\succ v_1 = 3 v_2 = 12$
- > Critical Value(s):

Test Statistic:

F = 11.9933

Decision: Reject at α = .05 Conclusion: There Is Evidence Pop. Means Are Different

Factorial Experiments

Factorial Design

- > 1. Experimental Units (Subjects) Are Assigned Randomly to Treatments
 • Subjects are Assumed Homogeneous
- > 2. Two or More Factors or Independent Variables
 - Each Has 2 or More Treatments (Levels)
- > 3. Analyzed by Two-Way ANOVA

Advantages of Factorial Designs

1.Saves Time & Effort

 e.g., Could Use Separate Completely Randomized Designs for Each Variable

2.Controls Confounding Effects by Putting Other Variables into Model

3.Can Explore Interaction Between Variables

Two-Way ANOVA

1. Tests the Equality of 2 or More Population Means When Several Independent Variables Are Used

 Same Results as Separate One-Way ANOVA on Each Variable
 But Interaction Can Be Tested

Two-Way ANOVA Assumptions

1.Normality

Populations are Normally Distributed

2.Homogeneity of Variance

Populations have Equal Variances

3.Independence of Errors

Independent Random Samples are Drawn

Two-Way ANOVA Data Table

Factor	Factor B				
А	1	2		b	Observation
1	Y ₁₁₁	Y ₁₂₁		Y _{1b1}	
	Y ₁₁₂	Y ₁₂₂		Y _{1b2}	Y.
2	Y ₂₁₁	Y ₂₂₁		Y _{2b1}	
	Y ₂₁₂	Y ₂₂₂		Y202	/ / Leveli leve
:	:	:	:	:	Factor Fact
а	Y _{a11}	Y _{a21}		Y _{ab1}	AB
	Y _{a12}	Y _{a22}		Y _{ab2}	$\Xi((\bigcirc)))$

j

Two-Way ANOVA Null Hypotheses

1.No Difference in Means Due to Factor A

H₀: μ₁ = μ₂ =... = μ_a.

2.No Difference in Means Due to Factor B

H₀: μ₁ = μ₂ =... = μ_b.

3.No Interaction of Factors A & B

H₀: AB_{ii} = 0

Two-Way ANOVA Total Variation Partitioning

Two-Way ANOVA Summary Table

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F	
A (Row)	a - 1	SS(A)	MS(A)	MS(A) MSE	
B (Column)	b - 1	SS(B)	MS(B)	MS(B) MSE	
AB (Interaction)	(a-1)(b-1)	SS(AB)	MS(AB)	MS(AB) MSE	
Error	n - ab	SSE	MSE		
Total	n - 1	SS(Total)	Same as Other		
Prepared by: Mr. R A Khan Designs 2					

Interaction

1.Occurs When Effects of One Factor Vary According to Levels of Other Factor 2. When Significant, Interpretation of Main Effects (A & B) Is Complicated **3.Can Be Detected** In Data Table, Pattern of Cell Means in One **Row Differs From Another Row** In Graph of Cell Means, Lines Cross

Graphs of Interaction

Effects of Gender (male or female) & dietary group (sv, lv, nor) on systolic blood pressure

Interaction

No Interaction

